DFRobot MPU-6050 IMU (6DOF) Problems

Hello,
I recently got a DFRobot MPU6050 IMU and it isn’t functioning properly.

I’m using supplied examples…no custom/⁠crafted code.

Accelerometer range is set to ±⁠ 2g (-⁠32768 -⁠> +32768)

as per http://www.i2cdevlib.com/forums/topic/4-understanding-raw-values-of-accelerometer-and-gyrometer

Yet…it only goes up to about 6150 (z up) to approx -10300 (z down) . i.e. range = 16450 (not far off 16384)…when it should be -16384 to + 16384 when I flip the imu over.

I’ve used the calibration routine to calibrate it…and it (correctly) assumes 16384 is the amount for 1 g and it ultimately gives me offset correction values that allow it to operate between 16384 (up) and 0 (down)
But this is obviously wrong as the full range should be -⁠16384 to 16384.

If I set FS Range to ±⁠4g I get 8192 -⁠-⁠-⁠> 0
If I set FS Range to ±⁠8g I get 4096 -⁠-⁠-⁠> 0

Has anyone else had issues like this?

It is unusable. Might have to go to another type of chip.

Could I have some old version of the board? It doesn’t look like the one on the Core-Elect website…missing some writing…and the chip numbers are a bit different (ones below the MPU-6050). (I know it might not be the best comparison…because you might use stock-standard images)

I did manage to get the “Processing” Animation working with it, but I don’t believe this isn’t a thorough ‘test’ that all systems are working as they should be.

Cheers

Joe

Hi Joe,

Sounds like you’ve done the paces on this device. I don’t have touch time with the MPU6050 although if I were using it then I’d do exactly what you’ve done - some raw testing followed by normalizing as needed. I’d be interested to hear from someone else who has used this device to see if that’s an everyday scenario or something else is at play.

Next step is to perform ‘self-test’ to ensure that the sensor is within specification.

Results are:-
Initializing I2C devices…
Testing device connections…
MPU6050 connection successful
Range: 2
Values with Self-Test Off - 340 908 2857
Values with Self-Test On - 1432 1144 2877
getAccelXSelfTestFactoryTrim xa_test: 17
getAccelYSelfTestFactoryTrim ya_test: 15
getAccelZSelfTestFactoryTrim za_test: 21
Deduced value for FT[Xa] = 2368.1198730468
Deduced value for FT[Ya] = 2216.0676269531
Deduced value for FT[Za] = 2704.2375488281
X change from Fact Trim Self Test Response: -53.89
Y change from Fact Trim Self Test Response: -89.35
Z change from Fact Trim Self Test Response: -99.26

The bottom three figures should be between -14 ant 14%
i.e. this is the movement of the values (self test on/self test off) relative to the FT value.

Anyone vouch for the code? or possibly test it?

I unfortunately don’t have a comparison one…but will have in in a weeks time or so.

int range = accelgyro.getFullScaleAccelRange();
Serial.print("Range: "); Serial.println(range);

accelgyro.setAccelXSelfTest(false);
accelgyro.setAccelYSelfTest(false);
accelgyro.setAccelZSelfTest(false);

accelgyro.getMotion6(&ax1, &ay1, &az1, &gx, &gy, &gz);
Serial.print(“Values with Self-Test Off - “);
Serial.print(ax1); Serial.print(”\t”);
Serial.print(ay1); Serial.print("\t");
Serial.println(az1);

delay(100);

accelgyro.setAccelXSelfTest(true);
accelgyro.setAccelYSelfTest(true);
accelgyro.setAccelZSelfTest(true);

delay(200);

accelgyro.getMotion6(&ax2, &ay2, &az2, &gx, &gy, &gz);
Serial.print(“Values with Self-Test On - “);
Serial.print(ax2); Serial.print(”\t”);
Serial.print(ay2); Serial.print("\t");
Serial.println(az2);

delay(200);

int xa_test = accelgyro.getAccelXSelfTestFactoryTrim();
Serial.print("getAccelXSelfTestFactoryTrim xa_test: ");
Serial.println(xa_test);

int ya_test = accelgyro.getAccelYSelfTestFactoryTrim();
Serial.print("getAccelYSelfTestFactoryTrim ya_test: ");
Serial.println(ya_test);

int za_test = accelgyro.getAccelZSelfTestFactoryTrim();
Serial.print("getAccelZSelfTestFactoryTrim za_test: ");
Serial.println(za_test);

ftxa = 4096 * 0.34 * pow((0.92/0.34), (xa_test - 1)/30.0);
ftya = 4096 * 0.34 * pow((0.92/0.34), (ya_test - 1)/30.0);
ftza = 4096 * 0.34 * pow((0.92/0.34), (za_test - 1)/30.0);

Serial.print("Deduced value for FT[Xa] = "); Serial.println(ftxa, DEC);
Serial.print("Deduced value for FT[Ya] = "); Serial.println(ftya, DEC);
Serial.print("Deduced value for FT[Za] = "); Serial.println(ftza, DEC);

xp = 100 * ((ax2 - ax1) - ftxa)/ftxa;
yp = 100 * ((ay2 - ay1) - ftya)/ftya;
zp = 100 * ((az2 - az1) - ftza)/ftza;

Serial.print("X change from Fact Trim Self Test Response: "); Serial.println(xp);
Serial.print("Y change from Fact Trim Self Test Response: "); Serial.println(yp);
Serial.print("Z change from Fact Trim Self Test Response: "); Serial.println(zp);

After a few more tests (and a minor code change, to show the way data is shown…not underlying logic), it shows values that are correct. Strange.

Initializing I2C devices…
Testing device connections…
MPU6050 connection successful
Range: 2
Values with Self-Test Off - 1442 1392 2871
Values with Self-Test On - 1438 1385 2865
getAccelXSelfTestFactoryTrim xa_test: 17
getAccelYSelfTestFactoryTrim ya_test: 15
getAccelZSelfTestFactoryTrim za_test: 21
Deduced value for FT[Xa] = 2368.1198730468
Deduced value for FT[Ya] = 2216.0676269531
Deduced value for FT[Za] = 2704.2375488281
X change from Fact Trim Self Test Response: -0.17
Y change from Fact Trim Self Test Response: -0.32
Z change from Fact Trim Self Test Response: -0.22

However…if I use a program such as:-

it shows.

(z-axis up)
MPU6050 initialized for active data mode…
X-acceleration: -0.37 mg Y-acceleration: -0.37 mg Z-acceleration: 1007.57 mg
X-gyro rate: -0.3 degrees/sec Y-gyro rate: 0.1 degrees/sec Z-gyro rate: -0.1 degrees/sec
Temperature is 31.85 degrees C

Then if Z-Axis down it shows

X-acceleration: 33.81 mg Y-acceleration: 335.45 mg Z-acceleration: -18.31 mg
X-gyro rate: -248.2 degrees/sec Y-gyro rate: 45.4 degrees/sec Z-gyro rate: 12.2 degrees/sec
Temperature is 32.59 degrees C

i.e. it does not show -1000mg.

Then if I put X-Axis up it shows:-

X-acceleration: 465.82 mg Y-acceleration: -28.20 mg Z-acceleration: 486.94 mg
X-gyro rate: -1.2 degrees/sec Y-gyro rate: 1.6 degrees/sec Z-gyro rate: 4.9 degrees/sec
Temperature is 32.54 degrees C

This is half of g. Clearly not right

And if I put Y axis up it shows:-

X-acceleration: -48.83 mg Y-acceleration: 467.77 mg Z-acceleration: 458.74 mg
X-gyro rate: -18.4 degrees/sec Y-gyro rate: 0.1 degrees/sec Z-gyro rate: 1.3 degrees/sec
Temperature is 32.66 degrees C

This is half of g. Clearly not right

Any ideas?

I suspect the product is faulty. I might see if there are some ‘gains’ or something…but failing that what do I need to do to return it?

Cheers

Joe

Hi Joe,

Can you send me your code (via the forum) verbatim and we can check against another module here to isolate if this is hardware or software. Happy to help!

Thank you very much.

Here is code.

/* MPU6050 Basic Example Code*/
#include <Wire.h>

#define XGOFFS_TC        0x00              
#define YGOFFS_TC        0x01                                                                          
#define ZGOFFS_TC        0x02
#define X_FINE_GAIN      0x03 
#define Y_FINE_GAIN      0x04
#define Z_FINE_GAIN      0x05
#define XA_OFFSET_H      0x06 
#define XA_OFFSET_L_TC   0x07
#define YA_OFFSET_H      0x08
#define YA_OFFSET_L_TC   0x09
#define ZA_OFFSET_H      0x0A
#define ZA_OFFSET_L_TC   0x0B
#define SELF_TEST_X      0x0D
#define SELF_TEST_Y      0x0E    
#define SELF_TEST_Z      0x0F
#define SELF_TEST_A      0x10
#define XG_OFFS_USRH     0x13 
#define XG_OFFS_USRL     0x14
#define YG_OFFS_USRH     0x15
#define YG_OFFS_USRL     0x16
#define ZG_OFFS_USRH     0x17
#define ZG_OFFS_USRL     0x18
#define SMPLRT_DIV       0x19
#define CONFIG           0x1A
#define GYRO_CONFIG      0x1B
#define ACCEL_CONFIG     0x1C
#define FF_THR           0x1D 
#define FF_DUR           0x1E 
#define MOT_THR          0x1F 
#define MOT_DUR          0x20 
#define ZMOT_THR         0x21 
#define ZRMOT_DUR        0x22  
#define FIFO_EN          0x23
#define I2C_MST_CTRL     0x24   
#define I2C_SLV0_ADDR    0x25
#define I2C_SLV0_REG     0x26
#define I2C_SLV0_CTRL    0x27
#define I2C_SLV1_ADDR    0x28
#define I2C_SLV1_REG     0x29
#define I2C_SLV1_CTRL    0x2A
#define I2C_SLV2_ADDR    0x2B
#define I2C_SLV2_REG     0x2C
#define I2C_SLV2_CTRL    0x2D
#define I2C_SLV3_ADDR    0x2E
#define I2C_SLV3_REG     0x2F
#define I2C_SLV3_CTRL    0x30
#define I2C_SLV4_ADDR    0x31
#define I2C_SLV4_REG     0x32
#define I2C_SLV4_DO      0x33
#define I2C_SLV4_CTRL    0x34
#define I2C_SLV4_DI      0x35
#define I2C_MST_STATUS   0x36
#define INT_PIN_CFG      0x37
#define INT_ENABLE       0x38
#define DMP_INT_STATUS   0x39 
#define INT_STATUS       0x3A
#define ACCEL_XOUT_H     0x3B
#define ACCEL_XOUT_L     0x3C
#define ACCEL_YOUT_H     0x3D
#define ACCEL_YOUT_L     0x3E
#define ACCEL_ZOUT_H     0x3F
#define ACCEL_ZOUT_L     0x40
#define TEMP_OUT_H       0x41
#define TEMP_OUT_L       0x42
#define GYRO_XOUT_H      0x43
#define GYRO_XOUT_L      0x44
#define GYRO_YOUT_H      0x45
#define GYRO_YOUT_L      0x46
#define GYRO_ZOUT_H      0x47
#define GYRO_ZOUT_L      0x48
#define EXT_SENS_DATA_00 0x49
#define EXT_SENS_DATA_01 0x4A
#define EXT_SENS_DATA_02 0x4B
#define EXT_SENS_DATA_03 0x4C
#define EXT_SENS_DATA_04 0x4D
#define EXT_SENS_DATA_05 0x4E
#define EXT_SENS_DATA_06 0x4F
#define EXT_SENS_DATA_07 0x50
#define EXT_SENS_DATA_08 0x51
#define EXT_SENS_DATA_09 0x52
#define EXT_SENS_DATA_10 0x53
#define EXT_SENS_DATA_11 0x54
#define EXT_SENS_DATA_12 0x55
#define EXT_SENS_DATA_13 0x56
#define EXT_SENS_DATA_14 0x57
#define EXT_SENS_DATA_15 0x58
#define EXT_SENS_DATA_16 0x59
#define EXT_SENS_DATA_17 0x5A
#define EXT_SENS_DATA_18 0x5B
#define EXT_SENS_DATA_19 0x5C
#define EXT_SENS_DATA_20 0x5D
#define EXT_SENS_DATA_21 0x5E
#define EXT_SENS_DATA_22 0x5F
#define EXT_SENS_DATA_23 0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO      0x63
#define I2C_SLV1_DO      0x64
#define I2C_SLV2_DO      0x65
#define I2C_SLV3_DO      0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET  0x68
#define MOT_DETECT_CTRL   0x69
#define USER_CTRL        0x6A 
#define PWR_MGMT_1       0x6B 
#define PWR_MGMT_2       0x6C
#define DMP_BANK         0x6D  
#define DMP_RW_PNT       0x6E  
#define DMP_REG          0x6F  
#define DMP_REG_1        0x70
#define DMP_REG_2        0x71
#define FIFO_COUNTH      0x72
#define FIFO_COUNTL      0x73
#define FIFO_R_W         0x74
#define WHO_AM_I_MPU6050 0x75 


#define ADO 0
#if ADO
#define MPU6050_ADDRESS 0x69  // Device address when ADO = 1
#else
#define MPU6050_ADDRESS 0x68  // Device address when ADO = 0
#endif

// Set initial input parameters
enum Ascale {
  AFS_2G = 0,
  AFS_4G,
  AFS_8G,
  AFS_16G
};

enum Gscale {
  GFS_250DPS = 0,
  GFS_500DPS,
  GFS_1000DPS,
  GFS_2000DPS
};

// Specify sensor full scale
int Gscale = GFS_250DPS;
int Ascale = AFS_2G;
float aRes, gRes; // scale resolutions per LSB for the sensors
  
// Pin definitions
int intPin = 12;  // This can be changed, 2 and 3 are the Arduinos ext int pins

int16_t accelCount[3];  
float ax, ay, az;    
int16_t gyroCount[3]; 
float gx, gy, gz;     
float gyroBias[3], accelBias[3]; 
int16_t tempCount; 
float temperature;   
float SelfTest[6];            
uint32_t count = 0;

void setup()
{
  Wire.begin();
  Serial.begin(38400);
  
  // Set up the interrupt pin, its set as active high, push-pull
  pinMode(intPin, INPUT);
  digitalWrite(intPin, LOW);

 
  // Read the WHO_AM_I register, this is a good test of communication
  uint8_t c = readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
  
  if (c == 0x68) // WHO_AM_I should always be 0x68
  {  
    Serial.println("MPU6050 is online...");
    
    MPU6050SelfTest(SelfTest); 
    Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
    Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
    Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
    Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
    Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
    Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");

    if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {

    Serial.println("Pass Selftest!");  
    
    calibrateMPU6050(gyroBias, accelBias); 
    initMPU6050(); Serial.println("MPU6050 initialized for active data mode...."); 

   }
   else
   {
    Serial.print("Could not connect to MPU6050: 0x");
    Serial.println(c, HEX);
    while(1) ; // Loop forever if communication doesn't happen
   }

  }
}

void loop()
{  
  // If data ready bit set, all data registers have new data
  if(readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  

    readAccelData(accelCount);  // Read the x/y/z adc values
    getAres();
    
    // Now we'll calculate the accleration value into actual g's
    ax = (float)accelCount[0]*aRes - accelBias[0];
    ay = (float)accelCount[1]*aRes - accelBias[1];   
    az = (float)accelCount[2]*aRes - accelBias[2];  
   
    readGyroData(gyroCount);  // Read the x/y/z adc values
    getGres();
 
    // Calculate the gyro value into actual degrees per second
    gx = (float)gyroCount[0]*gRes - gyroBias[0];  
    gy = (float)gyroCount[1]*gRes - gyroBias[1];  
    gz = (float)gyroCount[2]*gRes - gyroBias[2];   

    tempCount = readTempData();  // Read the x/y/z adc values
    temperature = ((float) tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
   }  
   
    uint32_t deltat = millis() - count;
    if(deltat > 500) {
 
    // Print acceleration values in milligs!
    Serial.print("X-acceleration: "); Serial.print(1000*ax); Serial.print(" mg "); 
    Serial.print("Y-acceleration: "); Serial.print(1000*ay); Serial.print(" mg "); 
    Serial.print("Z-acceleration: "); Serial.print(1000*az); Serial.println(" mg"); 
 
    // Print gyro values in degree/sec
    Serial.print("X-gyro rate: "); Serial.print(gx, 1); Serial.print(" degrees/sec "); 
    Serial.print("Y-gyro rate: "); Serial.print(gy, 1); Serial.print(" degrees/sec "); 
    Serial.print("Z-gyro rate: "); Serial.print(gz, 1); Serial.println(" degrees/sec"); 
    
   // Print temperature in degrees Centigrade      
    Serial.print("Temperature is ");  Serial.print(temperature, 2);  Serial.println(" degrees C");
    Serial.println("");

     
    count = millis();
    }

}


void getGres() {
  switch (Gscale)
  {
    case GFS_250DPS:
          gRes = 250.0/32768.0;
          break;
    case GFS_500DPS:
          gRes = 500.0/32768.0;
          break;
    case GFS_1000DPS:
          gRes = 1000.0/32768.0;
          break;
    case GFS_2000DPS:
          gRes = 2000.0/32768.0;
          break;
  }
}

void getAres() {
  switch (Ascale)
  {
    case AFS_2G:
          aRes = 2.0/32768.0;
          break;
    case AFS_4G:
          aRes = 4.0/32768.0;
          break;
    case AFS_8G:
          aRes = 8.0/32768.0;
          break;
    case AFS_16G:
          aRes = 16.0/32768.0;
          break;
  }
}


void readAccelData(int16_t * destination)
{
  uint8_t rawData[6];  
  readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  
  destination[0] = (int16_t)((rawData[0] << 8) | rawData[1]) ; 
  destination[1] = (int16_t)((rawData[2] << 8) | rawData[3]) ;  
  destination[2] = (int16_t)((rawData[4] << 8) | rawData[5]) ; 
}

void readGyroData(int16_t * destination)
{
  uint8_t rawData[6];  // x/y/z gyro register data stored here
  readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  
  destination[0] = (int16_t)((rawData[0] << 8) | rawData[1]) ;  
  destination[1] = (int16_t)((rawData[2] << 8) | rawData[3]) ;  
  destination[2] = (int16_t)((rawData[4] << 8) | rawData[5]) ; 
}

int16_t readTempData()
{
  uint8_t rawData[2];  // x/y/z gyro register data stored here
  readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); 
  return ((int16_t)rawData[0]) << 8 | rawData[1] ; 
}



// Configure the motion detection control for low power accelerometer mode
void LowPowerAccelOnlyMPU6050()
{

  
  uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); 
  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x30); 

  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); 
  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x00); 
    
  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); 
  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG,  c | 0x00); 

  c = readByte(MPU6050_ADDRESS, CONFIG);
  writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
  writeByte(MPU6050_ADDRESS, CONFIG, c |  0x00);  // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
    
  c = readByte(MPU6050_ADDRESS, INT_ENABLE);
  writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF);  // Clear all interrupts
  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40);  // Enable motion threshold (bits 5) interrupt only
  
// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
// for at least the counter duration
  writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
  writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
  
  delay (100);  // Add delay for accumulation of samples
  
  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c |  0x07);  // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
   
  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])  

  c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts

}


void initMPU6050()
{  
 // Initialize MPU6050 device


  // get stable time source
  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001

 // Configure Gyro and Accelerometer
 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
  writeByte(MPU6050_ADDRESS, CONFIG, 0x03);  
 
 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz sample rate 
 
 // Set gyroscope full scale range
 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
  uint8_t c =  readByte(MPU6050_ADDRESS, GYRO_CONFIG);
  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
   
 // Set accelerometer configuration
  c =  readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 

  // Configure Interrupts and Bypass Enable
  // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
  // can join the I2C bus and all can be controlled by the Arduino as master
   writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x02);    
   writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
}


// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void calibrateMPU6050(float * dest1, float * dest2)
{  
  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
  uint16_t ii, packet_count, fifo_count;
  int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
  
// reset device, reset all registers, clear gyro and accelerometer bias registers
  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
  delay(100);  
   
// get stable time source
// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  
  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); 
  delay(200);
  
// Configure device for bias calculation
  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
  writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
  delay(15);
  
// Configure MPU6050 gyro and accelerometer for bias calculation
  writeByte(MPU6050_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
 
  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g

// Configure FIFO to capture accelerometer and gyro data for bias calculation
  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 1024 bytes in MPU-6050)
  delay(80); // accumulate 80 samples in 80 milliseconds = 960 bytes

// At end of sample accumulation, turn off FIFO sensor read
  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
  readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
  fifo_count = ((uint16_t)data[0] << 8) | data[1];
  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging

  for (ii = 0; ii < packet_count; ii++) {
    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
    readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
    
    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
    accel_bias[1] += (int32_t) accel_temp[1];
    accel_bias[2] += (int32_t) accel_temp[2];
    gyro_bias[0]  += (int32_t) gyro_temp[0];
    gyro_bias[1]  += (int32_t) gyro_temp[1];
    gyro_bias[2]  += (int32_t) gyro_temp[2];
            
}
    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
    accel_bias[1] /= (int32_t) packet_count;
    accel_bias[2] /= (int32_t) packet_count;
    gyro_bias[0]  /= (int32_t) packet_count;
    gyro_bias[1]  /= (int32_t) packet_count;
    gyro_bias[2]  /= (int32_t) packet_count;
    
  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
  else {accel_bias[2] += (int32_t) accelsensitivity;}
 
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
  data[3] = (-gyro_bias[1]/4)       & 0xFF;
  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
  data[5] = (-gyro_bias[2]/4)       & 0xFF;

// Push gyro biases to hardware registers; works well for gyro but not for accelerometer
//  writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); 
//  writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
//  writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
//  writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
//  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
//  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);

  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;

// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.

  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
  readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
  accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
  readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
  accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
  readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
  accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
  
  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
  
  for(ii = 0; ii < 3; ii++) {
    if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
  }

  // Construct total accelerometer bias, including calculated average accelerometer bias from above
  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
  accel_bias_reg[1] -= (accel_bias[1]/8);
  accel_bias_reg[2] -= (accel_bias[2]/8);
 
  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
  data[1] = (accel_bias_reg[0])      & 0xFF;
  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
  data[3] = (accel_bias_reg[1])      & 0xFF;
  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
  data[5] = (accel_bias_reg[2])      & 0xFF;
  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers

  // Push accelerometer biases to hardware registers; doesn't work well for accelerometer
  // Are we handling the temperature compensation bit correctly?
//  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);  
//  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
//  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
//  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);  
//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);

// Output scaled accelerometer biases for manual subtraction in the main program
   dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
   dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
   dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}


// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
   uint8_t rawData[4];
   uint8_t selfTest[6];
   float factoryTrim[6];
   
   // Configure the accelerometer for self-test
   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
   writeByte(MPU6050_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
   delay(250);  // Delay a while to let the device execute the self-test
   rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
   rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
   rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
   rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
   // Extract the acceleration test results first
   selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
   selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 2 ; // YA_TEST result is a five-bit unsigned integer
   selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 0 ; // ZA_TEST result is a five-bit unsigned integer
   // Extract the gyration test results first
   selfTest[3] = rawData[0]  & 0x1F ; // XG_TEST result is a five-bit unsigned integer
   selfTest[4] = rawData[1]  & 0x1F ; // YG_TEST result is a five-bit unsigned integer
   selfTest[5] = rawData[2]  & 0x1F ; // ZG_TEST result is a five-bit unsigned integer   
   // Process results to allow final comparison with factory set values
   factoryTrim[0] = (4096.0*0.34)*(pow( (0.92/0.34) , (((float)selfTest[0] - 1.0)/30.0))); // FT[Xa] factory trim calculation
   factoryTrim[1] = (4096.0*0.34)*(pow( (0.92/0.34) , (((float)selfTest[1] - 1.0)/30.0))); // FT[Ya] factory trim calculation
   factoryTrim[2] = (4096.0*0.34)*(pow( (0.92/0.34) , (((float)selfTest[2] - 1.0)/30.0))); // FT[Za] factory trim calculation
   factoryTrim[3] =  ( 25.0*131.0)*(pow( 1.046 , ((float)selfTest[3] - 1.0) ));             // FT[Xg] factory trim calculation
   factoryTrim[4] =  (-25.0*131.0)*(pow( 1.046 , ((float)selfTest[4] - 1.0) ));             // FT[Yg] factory trim calculation
   factoryTrim[5] =  ( 25.0*131.0)*(pow( 1.046 , ((float)selfTest[5] - 1.0) ));             // FT[Zg] factory trim calculation

   Serial.print("SelftTest0: "); Serial.println(selfTest[0]);
   Serial.print("ft0: "); Serial.println(factoryTrim[0]);
 //  Output self-test results and factory trim calculation if desired
 //  Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
 //  Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
 //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
 //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);

 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
 // To get to percent, must multiply by 100 and subtract result from 100
   for (int i = 0; i < 6; i++) {
     destination[i] = 100.0 + 100.0*((float)selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
   }
   
}

  void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
  Wire.beginTransmission(address);  // Initialize the Tx buffer
  Wire.write(subAddress);           // Put slave register address in Tx buffer
  Wire.write(data);                 // Put data in Tx buffer
  Wire.endTransmission();           // Send the Tx buffer
}

  uint8_t readByte(uint8_t address, uint8_t subAddress)
{
  uint8_t data; // `data` will store the register data   
  Wire.beginTransmission(address);         // Initialize the Tx buffer
  Wire.write(subAddress);                  // Put slave register address in Tx buffer
  Wire.endTransmission(false);             // Send the Tx buffer, but send a restart to keep connection alive
  Wire.requestFrom(address, (uint8_t) 1);  // Read one byte from slave register address 
  data = Wire.read();                      // Fill Rx buffer with result
  return data;                             // Return data read from slave register
}

  void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{  
  Wire.beginTransmission(address);   // Initialize the Tx buffer
  Wire.write(subAddress);            // Put slave register address in Tx buffer
  Wire.endTransmission(false);       // Send the Tx buffer, but send a restart to keep connection alive
  uint8_t i = 0;
        Wire.requestFrom(address, count);  // Read bytes from slave register address 
  while (Wire.available()) {
        dest[i++] = Wire.read(); }         // Put read results in the Rx buffer
}

Hopefully that is easy to copy/paste.

Nice, and just so we are on the same page, can you give me a test condition with the board that we can replicate (try keep it straight forward)

Test 1.

Orientate the PCB so the Z axis is up. It should show:-
x, y approx 0 (Less then 100 is ok)
z approx 1000mg

[MY Results: This is what I see.]

Test 2

Orientate the PCB so the X axis is up. It should show:-
z, y approx 0 (Less then 100 is ok)
x approx 1000mg

[MY Results: x = 465, y = -28, z = 487]

Test 3

Orientate the PCB so the Y axis is up. It should show:-
x, z approx 0 (Less then 100 is ok)
y approx 1000mg

[MY Results: x = -48, y = 467, z = 458]

Further testing

You could then try by pointing z axis down and it should show approx -1000mg

And so on.

Hey Joseph,

Although we are out of stock of the exact DFRobot part that your ordered, I tested your code with a breakout board very similar from a different supplier that has the same chip MPU6050 and got the results that you listed as ideal for each test. We’ll run a test with the exact product when it is back in stock, but as they share the same chip, it looks like a localised issue.
We’ll link DFRobot in on this post and see if they have any insight.

That is awesome. Yes, hopefully they can shed some light on the issue.

Much appreciated.

I’ve had some difficult issues with some sensors in past, e.g. L3g4200D gyroscope, but managed to sort them out…this one looks a bit ominous.

Not a problem Joseph, hope we can get it all running smoothly.

sigh
well…another board gives me exactly the same results.

It is absurd that X axis up measures less then 1-g.

Please can we press DFRobot for any hints. They are bound to have seen this…or know of this.

Hmm yeah definitely frustrating, did you try another DFRobot board or was it a different one?

Tried on another SEN0142 board - so now I have two.

I’ve linked DFRobot support to this very topic; and one of their tech support staff is looking into it. Let’s give them a day or two given international timezones to see what they recommend from here.

Thanks very much Graham.

Hi Joseph,

DFRobot mentioned this could be a product issue - could you email us via support@core-electronics.com.au with your order number and we’ll get this sorted out!

Sorry for slow response. I have come back from trip and I’m having another look at it. Fresh eyes, fresh mind.

Ok, the Raw values for some reason are behaving themselves…not completely, but mostly.

There is still one thing that isn’t quite right though. Both sensors when on ±2g seem to produce 8192 for 1g, rather than the expected value of 16384. This I suspect is what is causing most of the issues I see.

Or another way to think about it…when I set it to ±2g…somehow it
If I alter the code (pasted in this thread) to assume ±4g sensitivity, things look okay!

Z axis up
X-acceleration: -14.65 mg Y-acceleration: -220.09 mg Z-acceleration: 976.56 mg

Z axis down
X-acceleration: -6.35 mg Y-acceleration: 41.38 mg Z-acceleration: -1054.69 mg

X axis up
X-acceleration: 1021.00 mg Y-acceleration: -27.22 mg Z-acceleration: 24.90 mg

X axis down
X-acceleration: -985.60 mg Y-acceleration: -2.08 mg Z-acceleration: -44.19 mg

Y axis up
X-acceleration: -22.46 mg Y-acceleration: 983.76 mg Z-acceleration: -55.42 mg

Y axis down
X-acceleration: 134.77 mg Y-acceleration: -1021.36 mg Z-acceleration: 103.52 mg

As you can see…it operates perfectly.

Of course this shouldn’t be, because the Datasheet for the MPU-6050 says it should be:-
16 bit - Two’s complimentent
i.e. +2g = +32767
-2g = -32767

I do see other people having issues with the ±2g and the expected max values.

e.g.

So, let’s hold off for now. Will continue to test and work on it.

Cheers Guys!

2 Likes

And in the MPU6050 library;-

  • 
    
  • AFS_SEL | Full Scale Range | LSB Sensitivity
  • --------±-----------------±---------------
  • 0 | +/- 2g | 8192 LSB/mg
  • 1 | +/- 4g | 4096 LSB/mg
  • 2 | +/- 8g | 2048 LSB/mg
  • 3 | +/- 16g | 1024 LSB/mg

In agreement with what I see, but not the datasheet

2 Likes